Dartmouth Logo

Dartmouth Logo

Sunday, September 8, 2013

Step Five: Size Up Your Specific Aims

NIAID News Release Logo

This article is the fifth in our Ten Steps to a Winning R01 Application series, which we are updating.
Here we show you how to put to the test your draft objectives—Specific Aims—you have planned for your project.
Though we are following the steps shown in Iterative Approach to Application Planning in Step 3: Draft Specific Aims, this step provides 1) an extra check of your aims in light of the study section you identified and 2) advice on presenting your aims if you propose highly innovative research.

Take Aim

Start assessing your Specific Aims by taking a hard look at the significance and innovation of your planned research.
Ask yourself:
  • Would my reviewers see my proposed project as tackling an important problem in a significant field?
  • Would they view my Specific Aims as capable of opening up new discoveries in my field?
  • Would my reviewers regard the work as new and unique?
  • Would they view my Specific Aims as likely to exert a significant influence on the research field(s) involved?
  • Are my Specific Aims written clearly and are they easy to understand?
You'll want to get outside opinions for a fresh perspective. Don't assume others, including your reviewers, will consider a research area to have the same priority that you do.
Also discuss your draft aims with colleagues who aren’t in your field. If they can understand your project and get excited about it, you have a better chance your reviewers will as well.
It is particularly useful to have your application reviewed by a colleague who has been successful in getting NIH funding, or better yet, has served on an NIH study section.
At this point, you may want to go back to Step 3: Draft Specific Aims, so you can be as certain as possible that the committee will appreciate your research plans.

Oh Innovation, Where Art Thou?

In previous Ten Steps articles, we emphasized the importance of proposing hypothesis-driven research with well-defined and feasible Specific Aims. But where does this leave innovative ideas that are less likely to fit inside "the box"?
Here are a few points to keep in mind:
Hypothesis-driven research does not necessarily constrain paradigm-shifting or "outside-the-box" research, nor does it necessarily mean sticking with the paradigm du jour. Paradigm-shifting and outside-the-box concepts can still lend themselves to focused hypotheses that can help guide the crafting of solid Specific Aims. Such focused hypotheses need not be tied to a broader theory or paradigm; they may simply provide a rationale that can be used to test the strength of the proposed aim or experiment.
Current criteria for scoring applications provide a transparent and fair guide to evaluate large numbers of diverse applications based on the aggregate merit of scientific significance, innovation, and feasibility.
For projects predominantly focused on innovation and outside-the-box research, investigators always have the option to use grant mechanisms, other than R01s, that may better suit their needs [e.g., exploratory/developmental research (R21) grants, NIH Director's Pioneer Award Program (DP1), and NIH Director's New Innovator Award Program (DP2)].
Serendipity is likely to happen just as frequently regardless of the grant mechanism supporting the research. As Einstein said, "Chance favors the prepared mind." NIH strongly encourages investigators to follow up on chance discoveries made in the course of executing R01-supported research programs.
How to Handle Innovation in Your Application
Although innovation is one of the five peer review criteria, many experienced investigators report that it's difficult to succeed in review with so called "high-risk" research.
Heed these words from an investigator who is the PI of an NIH New Innovator Award:
"It's always more difficult to convince people against commonly held beliefs (even though they may not be based on experimental data). Moreover, due to the higher risk of our work, we may also have a higher failure rate," says Sanjay K. Jain, M.D., of Johns Hopkins University School of Medicine and Bloomberg School of Public Health.
As you scrutinize your Specific Aims, make sure your reviewers will view them to be reasonably close to the scientific mainstream.
If your proposal challenges commonly held beliefs, be sure that you include sufficient evidence in your preliminary data to convince the reviewers that these beliefs may not be scientifically valid. If your research is high risk, it is likely to be highly innovative. Your job is to make the reviewers feel confident that the risk is worth taking.
So the research you propose should be new and unique and able to push forward the frontier of knowledge just ahead, starting from what's known, as the Expanding the Frontiers of Knowledge graphic illustrates:
Illustration: starburst graphic showing how your research pushes the borders of your scientific field outward.
When you write your application, you'll put the information about your project's importance and innovation in the Significance and Innovation sections.
Never forget that reviewers also look at the feasibility of the proposed research. Novelty alone will not help you if the proposed studies are not feasible given the available time, funds, and resources to do the work.
Get an idea of how investigators who wrote outstanding applications balanced these complexities by viewing our Sample Applications and Summary Statements, and read more advice on the pages linked below.
Related Links
Strategy for NIH Funding

No comments:

Post a Comment